TABLE II
$\sigma$-Parameters

|  | Arammiers |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overbrace{\mathrm{OCF}_{4}} \mathrm{XCaH}_{4} \mathrm{CO}_{3} \mathrm{SH}_{\mathrm{SCF}}$ |  | $\sim_{\mathrm{OCF}}^{1} \mathrm{XC} \mathrm{H}_{6} \mathrm{NH}_{1}+\underset{\mathrm{SCF}_{1}}{ }$ |  | Cl | $\mathrm{OCH}_{1}$ | SCH: | $\begin{gathered} \mathrm{O} \\ \mathrm{SCCH}_{2} \end{gathered}$ |
| $\sigma_{\mathrm{m}}$ | $+0.39$ | +0.40 | +0.47 | +0.46 | +0.37 | +0.11 | $+0.14$ | +0.37 |
| $\sigma_{p}$ | $+0.35$ | +0.51 | $+0.28$ | +0.64 | +0.23 | -0.27 | -0.01 | +0.42 |
| $\sigma_{1}{ }^{\text {a }}$ | +0.51 | +0.31 | +0.50 | +0.40 | $+0.47$ | +0.21 | +0.22 | +0.32 |
| $\sigma_{\text {R }}{ }^{\text {a }}$ | $-0.13$ | +0.17 | -0.23 | +0.22 | -0.25 | $-0.47$ | -0.24 | +0.10 |

a Calculated using equations 1,6 and 3 with appropriate $\alpha$ and $\rho_{1}$ values from Table II, Reference 12. $b$ Values are from H. H. Jaffee, Chem. Rev., 53, 222 (1953); F. G. Bordwell and P. J. Barton, J. Am. Chem. Soc., 78, 854 (1956); F. G. Bordwell and G. C. Cooper, J. Am. Chem. Soc., 74, 1058 (1952).
eters and presented arguments for expansion of the valence shell of the sulfur in the $\mathrm{SCOCH}_{3}$ and SCN groups. ${ }^{15}$ The $\sigma_{\mathrm{R}}$ parameters for the $\mathrm{SCF}_{3}$ group are considerably larger positive values and provide much more striking evidence for large contributions of form III.


The contribution of resonance form I must be minor, but becomes significant in the transition state for substitution of the ring by an electrophilic reagent since the orientation ${ }^{8}$ is ortho-para and not meta. For a $\mathrm{SCH}_{3}$ group, resonance form I must make the major contribution rather than form III. Contribution from resonance form IV, involving fluoride ion "no-bond" structures, is considered unlikely on

the basis of comparison with resonance effects for the $\mathrm{CF}_{3}$ and $\mathrm{SF}_{5}$ groups. ${ }^{16}$

Observations in support of the above discusssion also have been made for the $\mathrm{OCF}_{2} \mathrm{CF}_{3}, \mathrm{OCF}_{2} \mathrm{CF}_{2} \mathrm{H}$ and $\mathrm{SCF}_{2} \mathrm{CF}_{2} \mathrm{H}$ groups and will be presented in detail in a future publication.
(15) The expansion of the sulfur outer shell was recently reviewed by G. Cilento, Chem. Rev., 60, 147 (1980).
(16) W. A. Sheppard, publication in preparation.

## Contribution No. 721 from

The Central Research Department
Expertmental Station
William A. Sheppard
E. I. du Pont de Nemours and Company

Wilmington, Delaware
Received October 13, 1961

NUCLEOTIDE AND OLIGONUCLEOTIDE COMPOSITIONS OF THE ALANINE-, VALINE-, AND TYROSINE-ACCEPTOR "SOLUBLE" RIBONUCLEIC ACIDS OF YEAST
Sir:
The alanine-, valine-, and tyrosine-acceptor "soluble" ribonucleic acids (RNAs) of yeast recently have been purified by countercurrent distribution. ${ }^{1}$ Table I gives the results of analyses of the nucleotide compositions of the three purified RNAs. The alanine RNA, in comparison with the other two, has a very low content of adenylic acid (Ap) and a high content of guanylic acid (Gp), and possibly contains less pseudouridylic
(1) J. Apgar, R. W. Holley and S. F. Merrill, J. Biol. Chem.. in press. (For a recent review of the role of "soluble" RNA in protein synthesis see P. Berg, Ann. Rev. Biochem., 30, 293 (1961)).
acid (PsUp). The valine and tyrosine RNAs differ little in nucleotide composition. ${ }^{2}$

The analyses in Table I are consistent with the formulas for the purified RNAs. ${ }^{3}$

Alanine RNA: $\mathrm{pGp}\left[(\mathrm{Ap})_{10}(\mathrm{Cp})_{26}(\mathrm{Gp})_{23}(\mathrm{Up})_{17}\left(\mathrm{P}_{8} \mathrm{Up}\right)_{3}\right] \mathrm{A}$ Valine RNA: pGp[(Ap) $\left.)_{16}(\mathrm{Cp})_{28}(\mathrm{Gp})_{24}(\mathrm{Up})_{16}\left(\mathrm{P}_{\mathrm{s}} \mathrm{Up}\right)_{4}\right] \mathrm{A}$ Tyrosine RNA: $\mathrm{pGp}\left[(\mathrm{Ap})_{18}(\mathrm{Cp})_{22}(\mathrm{Gp})_{25}(\mathrm{Up})_{14}\left(\mathrm{P}_{8} \mathrm{Up}\right)_{4}\right] \mathrm{A}$
As indicated in Table $I$, the partition coefficients of the valine and tyrosine RNAs in the

Table I
Nucleotide Composittons of Purified Alanine-, Valineand Tyrosine-Acceptor Ribonucletc Actds of Yeasta

| Nucieotide | Alanine | RNA, Mole $\%$ | Valine |
| :--- | :---: | :---: | :---: |
| $\mathrm{Ap}^{b}$ | 12.1 | 19.1 | Tyrosinc |
| Cp | 29.9 | 27.5 | 21.7 |
| Gp | 33.7 | 29.5 | 30.2 |
| Up | 20.8 | 19.0 | 17.1 |
| PsUp | 3.7 | 4.9 | 4.4 |
| Partition coefticient |  | 0.12 | 0.21 |

a Alkaline hydrolysates of 1 mg . of the RNAs were chromatographed on Dowex 1 columns $0.2 \times 15 \mathrm{~cm}$. according to the procedure of W. E. Cohn and E. Volkin, Naiure, 167, 483 (1951). The values given are averages of three or more determinations, and are not corrected for the terminal nucleoside and nucleoside diphosphates. © The abbreviations used are: Ap, adenylic acid; Cp, cytidylic acid; Gp, guanylic acid; Up, uridylic acid; and PsUp, pseudouridylic acid. © Partition coefficients of the purified RNAs in a conntercurrent distribution solvent system composed of phosphate buffer, formamide and 2-propanol (see ref. 1).
countercurrent distribution solvent system differ by a factor of 20 although these two RNAs differ little in nucleotide composition. Presumably the different partition coefficients are a result of differences in nucleotide sequence. To obtain information on nucleotide sequences, pancreatic ribonuclease digests of the three purified RNAs were chromatographed on DEAE-Sephadex. ${ }^{4}$ The results of the analyses are shown in Fig. 1. In the chromatographic patterns, the mononucleotides, cytidylic acid (peak at fraction 37) and uridylic acid (peak at fraction 50), are followed by dinucleotides and higher oligonucleotides. The peak at
(2) Previous analyses of fractions across the countercurreut dis. tribution pattern indicated little change in nucleotide composition except at the end of the patteru, where the alanine RNA is fonnd.
(3) The formulas assume terminal guanosine diphosphate (M. F. Singer and G. L. Cantoui, Biochim. ai Biophys. Acta, 39, 182 (1960)) and terminal adenosine (F. G. Zachait, G. Acs and F. Lipmann, Proc. Nail. Acad. Sci., 44, 885 (1958)) although these have not yet been established for the purified RNAs.
(4) The procedure used was a modification of that of M. Staehelin, E. A. Peterson aud H. A. Sober, Arch. Biochem. Biophys., 85, 289 (1959). The use of DEAE-Gephadex (Pharmacia Fine Cliemicals, Rochester, Minn.) in place of DEAE-cellulose is strongly recom. mended.


Fig. 1.-Absorbancies (A) at $260 \mathrm{~m} \mu$ of fractions obtained by chromatography of pancreatic ribonuclease digests of 1.5 mng. each of the purified alanine-acceptor RNA (bottom curve), valine-acceptor RNA (middle curve), and tyrosineacceptor RNA (top curve) on DEAE-Sephadex. (The column, $0.25 \times 50 \mathrm{~cm}$., was eluted with an increasing gradient of ammonium carbonate produced by using 120 ml . of water, 120 ml . of water, and 116 ml . of 0.75 M ammonium carbonate respectively, in three chambers of a Varigrad (see ref. 4). The volume of the fractions was 2.2 ml .)
fraction 90 , very pronounced in the digest of the alanine RNA, is believed to be $G p U p$, the last of the dinucleotides to be eluted.

Comparison of the three curves in Fig. 1 indicates that there is hardly a single oligonucleotide that occurs to the same extent in any two of the RNAs. The chromatographic analyses on DEAESephadex are highly reproducible and even the smaller differences in the curves are believed to be real.

It is clear that the alanine-, valine-, and tyrosineacceptor "soluble" RNAs of yeast differ greatly in structure. The differences between these three RNAs are much more complex than would be required by simple hypotheses of information transfer by nucleic acids.

Acknowledgment.-This work was supported in part by grants from the National Science Foundation and the National Institutes of Health. U. S. Plant, Soil and Nutrition Laboratory,

SWCRD, ARS, U. S. Department of Agriculture,
and Department of Blochemistry Robert W. Holley and Department of ithermenstry Robert Jefan Apgar Susan H. Merrill Rectivid November 8,1961

## MOLECULAR STRUCTURE OF $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Fe}(\mathrm{CO})$ 3

 Sir:There have been a number of suggestions ${ }^{1,2.3,4,4,56}$ that the cycloöctatetraene (COT) ring in $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Fe}$ $(\mathrm{CO})_{3}$ is planar, and one suggestion ${ }^{7}$ that the tub form, like that established for free cycloöctatetraene ${ }^{8,9,10}$ and its silver complex, ${ }^{11,12}$ occurs in this compound. A similarly large number and greater variety of suggestions for the geometry of the $\mathrm{C}_{8} \mathrm{H}_{8}$ ring in $(\mathrm{OC})_{3} \mathrm{FeC}_{8} \mathrm{H}_{8} \mathrm{Fe}(\mathrm{CO})_{3}$ were shown to be incorrect, when the unsuspected chair form was proved. ${ }^{13}$ We show here that yet another geometry, a dihedral form not included in any of the above predictions, occurs for the cycloöctatetraene ring in $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Fe}(\mathrm{CO})_{3}$.


Fig. 1.-The structure of $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Fe}(\mathrm{CO})_{3}$ : bond distances are $\mathrm{C}_{1}-\mathrm{C}_{2}=\mathrm{C}_{3}-\mathrm{C}_{4}=1.42, \mathrm{C}_{2}-\mathrm{C}_{3}=1.42, \mathrm{C}_{4}-\mathrm{C}_{5}=\mathrm{C}_{1}-\mathrm{C}_{8}$ $=1.45, \mathrm{C}_{5}-\mathrm{C}_{6}=\mathrm{C}_{7}-\mathrm{C}_{8}=1.34, \mathrm{C}_{6}-\mathrm{C}_{7}=1.49, \mathrm{Fe}-\mathrm{C}_{1}=$ $\mathrm{Fe}_{-\mathrm{C}_{4}}=2.18, \mathrm{Fe}-\mathrm{C}_{2}=\mathrm{Fe}-\mathrm{C}_{3}=2.05, \mathrm{Fe}-\mathrm{C}($ carbonyl $)=$ 1.80 (av.) , $\mathrm{C}-\mathrm{O}=1.13$ (av.) all $\pm$ about $0.02 \AA$. Bond angles are $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}=\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}=124.6^{\circ}, \mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}=\mathrm{C}_{2}-$ $\mathrm{C}_{1}-\mathrm{C}_{8}=132.4^{\circ}, \mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}=\mathrm{C}_{1}-\mathrm{C}_{8}-\mathrm{C}_{7}=133.2, \mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{7}$ $=\mathrm{C}_{8}-\mathrm{C}_{7}-\mathrm{C}_{6}=131.8^{\circ}$, all $\pm$ about $1^{\circ}$, and to be compared with $135^{\circ}$ in the regular plane octagon. The angle between normals to the two planes in $\mathrm{C}_{8} \mathrm{H}_{8}$ is $41^{\circ}$ in $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Fe}\left(\mathrm{CO}_{3}\right)$.

A total of 856 observed X-ray diffraction maxima from a single crystal of symmetry Pnam with four molecules in a unit cell of dimensions $a=6.54$, $b=13.46$ and $c=11.51 \AA$. has yielded an agreement factor of $R=\Sigma| | F_{\mathrm{o}}|-|F \mathrm{c}|| / \Sigma\left|F_{\mathrm{O}}\right|=$ 0.091 . The molecular structure (Fig. 1) shows that the $\mathrm{Fe}(\mathrm{CO})_{3}$ group is attached to a "buta-
(1) T. A. Manuel and F. G. A. Stone, Proc. Chem. Soc. (London), 90 (1959).
(2) T. A. Manuel and F. G. A. Stone, J. Am. Chem. Soc., 82, 336 (1960).
(3) D. A. Brown, J. Inorg. and Nuclear Chem., 10, 39 (1959): 10, 49 (1959).
(4) F. A. Cotton, J. Chem. Soc. (London), 400 (1960).
(5) P. L. Pauson, Proc. Chem. Soc. (London), 297 (1960).
(6) L. E. Orgel, '"An Introduction to Transition Metal Chemistry: Ligand Field Theory,' John Wiley and Sons, New York, N. Y., 1960, p. 159.
(7) A. Nakamura and N. Hagihara, Bull. Chem. Soc. Japan, 32, 880 (1960).
(8) H. S. Kaufman, H. Mark and I. Fankuchen. Nature. 161, 165 (1048).
(9) J. Bregman, private communication.
(10) O. Bastiansen, L. Hedberg and K. Hedberg, J. Chem. Phys.. 27, 1311 (1957).
(11) F. S. Mathews and W. N. Lipscomb, J. Am. Chem, Soc., 80, 4745 (1958).
(12) F. S. Mathews and W. N. Lipscomb, J. Phys. Chem., 63, 845 (1959).
(13) B. Dickens and W. N. Lipecomb. J. Am. Chem. Soc.. 83, 489 (1061),

